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Abstract. The significance of ΛΛ-ΞN coupling in double-Λ hypernuclei has been studied. The Pauli sup-
pression effect due to this coupling in 6

ΛΛHe has been found to be 0.43MeV for the coupling strength of
the NSC97e potential. This indicates that the free-space ΛΛ interaction is stronger by an about 5◦ phase
shift than that deduced from the empirical data of 6

ΛΛHe without including the Pauli suppression effect.
In 5

ΛΛHe and 5
ΛΛH, an attractive term arising from the ΛΛ-ΞN conversion is enhanced by the formation

of an alpha-particle in the intermediate Ξ states. According to this enhancement, we have found that the
ΛΛ binding energy (∆BΛΛ) of 5

ΛΛHe is about 0.27MeV larger than that of 6
ΛΛHe for the NSC97e coupling

strength. This finding deviates from the general picture that the heavier is the core nucleus, the larger
is ∆BΛΛ.

PACS. 21.80.+a Hypernuclei – 21.10.Dr Binding energies and masses – 21.45.+v Few-body systems

1 Introduction

The significant role of ΛN-ΣN coupling in s-shell single-Λ
hypernuclei and in neutron matter with a Λ has been pre-
sented by us in previous papers [1,2]. It is also our inter-
est to find out the effect of ΛΛ-ΞN coupling in double-
Λ hypernuclei, since the mass difference between the Λ
and Ξ channels is only 28MeV, which is smaller than
that of the Λ and Σ channels. Recently, in the KEK
E373 emulsion counter hybrid experiment a 6

ΛΛHe, known
as “Nagara” event [3], was observed unambiguously. Fi-
likhin and Gal [4] have carried out Faddeev-Yakubovsky
three- and four-body calculations to analyze 6

ΛΛHe and
other double-Λ hypernuclei with various Nijmegen OBE
YN potential models. However, we notice that the Pauli
suppression effect has not been included in their calcula-
tions, which motivates us to investigate this effect on the
6
ΛΛHe,

5
ΛΛHe and

5
ΛΛH binding energies and on the deduc-

tion of the ΛΛ interaction in free space. In this paper we
reveal an appreciable Pauli suppression effect of ΛΛ-ΞN
coupling in 6

ΛΛHe and a significant enhancement effect in
5
ΛΛHe.

2 Λ-nucleus and ΛΛ potentials

We treat the double-Λ hypernuclei as Λ + Λ + core nu-
cleus three-body systems, and first prepare the necessary

a e-mail: akaishi@post.ket.jp

Λ-nucleus and ΛΛ potentials. A hyperon-nucleon poten-
tial, D2, which essentially solves the overbinding problem
in s-shell Λ hypernuclei [1], is used to obtain Λ-nucleus
folding potentials by the Brueckner-Hartree-Fock method.
They are slightly modified [5] so as to reproduce the ex-
perimental binding energies of the respective hypernuclei,
4
ΛH,

4
ΛHe and

5
ΛHe, and are expressed in the following two-

range Gaussian form:

VΛ-nucleus(r) =
2∑

i=1

Vie
−( r

µi
)2 (1)

with the parameters given in table 1.
A single-channel ΛΛ interaction in free space is derived

from the diagonal and off-diagonal terms of a strangeness

Table 1. Strength and range parameters of s-shell Λ-nucleus
potentials.

V1 V2 µ1 µ2 BΛ Bexp
Λ

(MeV) (MeV) (fm) (fm) (MeV) (MeV)

VΛ-h(0
+) 58.1 −78.4 1.40 1.72 2.39 2.39 ± 0.03

VΛ-h(1
+) 71.0 −81.0 1.40 1.72 1.23 1.24 ± 0.04

VΛ-t(0
+) 58.1 −76.8 1.40 1.72 2.05 2.04 ± 0.04

VΛ-t(1
+) 71.0 −79.6 1.40 1.72 1.01 1.00 ± 0.04

VΛ-α(l = 0) 91.0 −95.0 1.30 1.70 3.12 3.12 ± 0.02
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Table 2. Strength and range parameters of Shinmura’s poten-
tials, where VΛΛ, ΞN ≡ VΛΛ, Ξ−p = VΛΛ, Ξ0n is given in charge
base, not in isospin base.

V1 V2 µ1 µ2

(MeV) (MeV) (fm) (fm)

VΛΛ, ΛΛ(D) 22912 −384.7 0.35 0.85

VΛΛ, ΞN(D) 50.9 0.85

VΛΛ, ΛΛ(97e) 18927 −286.8 0.35 0.85

VΛΛ, ΞN(97e) 108.6 0.85

VΛΛ, ΛΛ(F) 14080 −198.6 0.35 0.85

VΛΛ, ΞN(F) 143.7 0.85

S = −2 coupled interaction as follows:

V sc
ΛΛ = VΛΛ, ΛΛ − VΛΛ, Ξ−p

1
∆E

VΞ−p, ΛΛ

−VΛΛ, Ξ0n
1
∆E

VΞ0n, ΛΛ. (2)

The diagonal term VΛΛ, ΛΛ and the coupling terms VΛΛ, ΞN

are Shinmura’s potentials which are phase shift equiva-
lents to the Nijmegen soft-core NSC97e [6] and the Ni-
jmegen hard-core NHC-D [7] and NHC-F [8] potentials;
these are in Gaussian forms with the parameters given in
table 2. A hard-core radius parameter rc = 0.56 (0.53) fm,
which is common to all NN and YN 1S0 states, is used
in the NHC-D (F) potential. ∆E of eq. (2) is the oper-
ator in intermediate propagation, and the single-channel
ΛΛ interaction becomes a non-local potential. For conve-
nience of practical use, we substitute for it a phase shift
equivalent local potential in a closure approximation in
which the ∆E is replaced by an averaged value ∆E. The
resultant local single-channel interaction is given by

V sc
ΛΛ(r) =

3∑
i=1

Vie
−( r

µi
)2 (3)

with µ1 = 0.35 fm, µ2 = 0.85 fm and µ3 = 0.60 fm.
First, we construct the local single-channel V sc

ΛΛ by
adjusting ∆E > 0 to reproduce the scattering param-
eters of the NSC97e S = −2 interaction. We found
that ∆E = 137.6MeV reproduces the scattering length,
aΛΛ = −0.50 fm, and the effective range, rΛΛ = 8.41 fm.
This local single-channel ΛΛ potential is given in table 3 as
V e

ΛΛ and it well reproduces the phase shifts of the non-local
potential of eq. (2) in the region of Ec.m. = 0–15MeV. A
measure of the ΛΛ interaction is given by

∆BΛΛ

(
A
ΛΛX

)
= BΛΛ

(
A
ΛΛX

) − 2BΛ

(
A−1
Λ X

)
. (4)

The ΛΛ binding energy of 6
ΛΛHe is found to be ∆BΛΛ =

0.64MeV which is about 0.4MeV smaller than that of
the Nagara-event data [3], ∆BΛΛ = 1.01±0.20+0.18

−0.11MeV,
when we employ this single-channel V e

ΛΛ and VΛ-α of
table 1. Because this result is in good agreement with
that of Filikhin and Gal [4], one may think that we have

Table 3. Strength parameters of the ΛΛ potentials in units of
MeV.

V1 V2 V3

V D
ΛΛ 22912 −384.7 −73.0

V D1
ΛΛ 22912 −356.5 −73.0

V D2
ΛΛ 22912 −361.9 −73.0

V D3
ΛΛ 22912 −418.7 −73.0

V e
ΛΛ 18927 −286.8 −171.4

V e1
ΛΛ 18927 −311.2 −171.4

V e2
ΛΛ 18927 −336.4 −171.4

V e3
ΛΛ 18927 −391.3 −171.4

V F
ΛΛ 14080 −198.6 −296.2

V F1
ΛΛ 14080 −246.3 −296.2

V F2
ΛΛ 14080 −291.4 −296.2

V F3
ΛΛ 14080 −343.2 −296.2

reached the same conclusion that NSC97e is an appropri-
ate model for reproducing the recent experimental value
of ∆BΛΛ(6ΛΛHe). However, since the effect of the ΛΛ-
ΞN coupling is already included implicitly in the single-
channel V e

ΛΛ, we must consider the Pauli suppression ef-
fect in 6

ΛΛHe, where all the 0s states are forbidden for a
nucleon converted from the ΛΛ-ΞN coupling. Since the
Pauli suppression effect would cause a serious change in
our results as will be discussed later, the above conclu-
sion about NSC97e should be altered. Before introduc-
ing the Pauli suppression, we modify V e

ΛΛ by adjusting
the long-range part of VΛΛ, ΛΛ in eq. (2) to fit the value
∆BΛΛ = 1.01MeV recommended from the Nagara event.
We call this fitted ΛΛ interaction V e1

ΛΛ. It is noticed that
this is not a ΛΛ interaction in free space. Carr, Afnan and
Gibson [9] discussed the significance of the Pauli suppres-
sion effect in deducing the ΛΛ interaction in free space
from the experimental ΛΛ binding energies of double-Λ
hypernuclei.

The Pauli suppression effect in 6
ΛΛHe is given by

∆VPauli = VΛΛ, Ξ−p
Pα

∆M
VΞ−p, ΛΛ

+VΛΛ, Ξ0n
Pα

∆M
VΞ0n, ΛΛ, (5)

where Pα is the projection operator on the 0s nucleon
states in an α-particle. Here, we also restrict the Ξ states
to 0s to estimate the minimum effect of the Pauli suppres-
sion. Then,

∆M =
MΞ0 +MΞ−

2
+
Mp +Mn

2
− 2MΛ + 2BΛ(5ΛHe)

= 32.0MeV, (6)

where we neglect the ΛΛ binding energy ∆BΛΛ since it
is nearly cancelled by the binding energy of the Ξ [10].
∆VPauli is expressed as a two-body non-local potential
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Table 4. Calculated −∆BΛΛ for different ΛΛ interactions in
units of MeV.

6
ΛΛHe 5

ΛΛHe 5
ΛΛH

V D
ΛΛ −1.48 −1.13 −1.07

V D1
ΛΛ −1.01 −0.76 −0.73

V D2
ΛΛ + ∆V D

Pauli + ∆V D
alpha −1.01 −0.86 −0.77

V D2
ΛΛ −1.10 −0.83 −0.79

∆V D
Pauli 0.09 0.05 0.05

∆V D
alpha – −0.08 −0.03

V e
ΛΛ −0.64 −0.47 −0.45

V e1
ΛΛ −1.01 −0.76 −0.72

V e2
ΛΛ + ∆V e

Pauli +∆V e
alpha −1.01 −1.28 −0.96

V e2
ΛΛ −1.44 −1.10 −1.03

∆V e
Pauli 0.43 0.23 0.20

∆V e
alpha – −0.41 −0.13

V F
ΛΛ −0.27 −0.20 −0.20

V F1
ΛΛ −1.01 −0.74 −0.70

V F2
ΛΛ + ∆V F

Pauli +∆V F
alpha −1.01 −1.92 −1.20

V F2
ΛΛ −1.89 −1.45 −1.36

∆V F
Pauli 0.88 0.47 0.43

∆V F
alpha – −0.94 −0.27

with
Pα = |0s0s〉αα〈0s0s|, (7)

which is given in appendix A. We then define the V e2
ΛΛ as

V e2
ΛΛ = V e1

ΛΛ −∆V e
Pauli, (8)

where the superscript in the second term means that
the NSC97e coupling strength is used in eq. (5). In
other words, V e2

ΛΛ + ∆V e
Pauli produces ∆BΛΛ(6ΛΛHe) =

1.01MeV, whereas V e2
ΛΛ alone gives 1.44MeV as shown

later. This V e2
ΛΛ is the single-channel ΛΛ interaction in

free space, which reproduces the Nagara-event data, and is
more attractive than the fitted V e1

ΛΛ and the original V e
ΛΛ.

Similarly, the single-channel ΛΛ interactions V D
ΛΛ, V

D1
ΛΛ ,

V D2
ΛΛ , V

F
ΛΛ, V

F1
ΛΛ and V F2

ΛΛ are constructed from the models
NHC-D and NHC-F, respectively. The strength parame-
ters of the various ΛΛ interactions are given in table 3.

3 Results and discussions

We perform the three-body calculations on the Λ + Λ +
α, Λ + Λ + h and Λ + Λ + t systems, where the total
wave function of the systems is expanded in terms of the
Gaussian wave functions, which are spanned over the three
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Fig. 1. Λ-Λ phase shifts for different cases of the ΛΛ-ΞN cou-
pling strength. The dot-dashed line is for V e1

ΛΛ, the solid line is
for V e2

ΛΛ and the dashed line is for V F2
ΛΛ.

rearrangement channels in Jacobi coordinates [11]. The
odd state Λ-α interaction, which is not well determined,
is assumed to be zero because its contribution is rather
small. A detailed account of our three-body calculation
method and its accuracy are discussed in appendix A. The
calculated values of the ΛΛ binding energies with various
ΛΛ potentials are summarized in table 4.

3.1 ΛΛ-ΞN coupling effects in 6
ΛΛHe

We have derived the single-channel ΛΛ interactions based
on Shinmura’s S = −2 interactions, which are phase shift
equivalents to the NSC97e, NHC-D and NHC-F models.
The free-space ΛΛ interactions, V D2

ΛΛ , V
e2
ΛΛ and V F2

ΛΛ, give
∆BΛΛ(6ΛΛHe) = 1.10MeV, 1.44MeV and 1.89MeV, re-
spectively, and when the Pauli suppression effect is in-
cluded they reduce to the empirical value, 1.01MeV. Thus,
the Pauli suppression effect due to the ΛΛ-ΞN coupling is
0.09MeV for NHC-D, 0.43MeV for NSC97e and 0.88MeV
for NHC-F in 6

ΛΛHe. The Λ-Λ scattering phase shifts de-
rived from the potentials V e1

ΛΛ, V
e2
ΛΛ and V F2

ΛΛ are shown in
fig. 1. The figure indicates that a 12◦ phase shift at the
maximum is obtained for V e1

ΛΛ if the Nagara-event data is
fitted by ignoring the Pauli suppression effect. For V e2

ΛΛ and
V F2

ΛΛ, which are fitted by including the Pauli suppression
effect, the Λ-Λ phase shifts attain 17◦ and 22◦, respec-
tively. The Λ-Λ scattering lengths are ae1ΛΛ = −0.73 fm,
ae2ΛΛ = −1.03 fm, aF1ΛΛ = −0.67 fm, and aF2ΛΛ = −1.32 fm,
respectively. It should be stressed that when we derive the
free-space single-channel ΛΛ interaction from the Nagara-
event data, the Pauli effect due to the ΛΛ-ΞN coupling
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should be consistently taken into account. In the case of
the NSC97e coupling strength, the potential in free space
V e2

ΛΛ is much more attractive than V e1
ΛΛ and V e

ΛΛ, the lat-
ter is equivalent to the original NSC97e S = −2 interac-
tion. The situation is more pronounced (restrained) with
the NHC-F (NHC-D) interaction, which has a stronger
(weaker) ΛΛ-ΞN coupling strength mainly due to the
value 3.33 (0.94) of the fΞΛK∗ baryon-meson coupling con-
stant [12].

Filikhin and Gal [4] showed that the ∆BΛΛ of 6
ΛΛHe

with the NSC97e ΛΛ interaction is about 0.5MeV smaller
than that of the Nagara event without the Pauli suppres-
sion effect. They discussed that the Pauli suppression ef-
fect would be completely cancelled out by a higher partial-
wave effect. We have checked the contributions of higher
partial waves to the binding energy of 6ΛΛHe. The contri-
bution due to ΛΛ interaction in l = 1 and higher states is
only 0.0005MeV which is negligibly small. For Λ-α inter-
action, the corresponding contribution is 0.14MeV. Our
Λ-α interaction for l = 1, derived from NSC97e, is less
attractive than the one for l = 0 given in table 1, and is
parametrized with V1 = 33.4MeV and V2 = −39.4MeV
on the same ranges. Thus, if we treat the NSC97e case in
a consistent way, the Pauli suppression effect of 0.43MeV
cannot be cancelled out by the higher partial-wave effect
and a net effect of 0.30MeV remains.

Recently, Nemura et al. [13] pointed out that a large re-
arrangement effect, due to the presence of the Λ-particle,
in the internal energy of the α core takes place in 5

ΛHe.
If we take into account the rearrangement effect, we
must reproduce with the ΛΛ interaction the ∆BΛΛ of
the Nagara-event data plus ∆Brearr of the rearrange-
ment which is approximately estimated to be 1MeV by
Kohno [14]. The ΛΛ interactions fitted to the so increased
∆BΛΛ+∆Brearr(6ΛΛHe) are denoted as V

D3
ΛΛ , V

e3
ΛΛ and V F3

ΛΛ,
and the respective Pauli suppression effects are 0.12, 0.58
and 1.19MeV. The maximum value of the ΛΛ phase shift
attains 30◦ for NSC97e. A more careful investigation on
this rearrangement effect shall be done elsewhere.

3.2 Characteristic features of 5
ΛΛHe and 5

ΛΛH

We then investigate the change of the ΛΛ-ΞN coupling
effect in 5

ΛΛHe and
5
ΛΛH, where the energy of the Ξ inter-

mediate state is lowered by the formation of an α-particle,
which increases the coupling effect [10]. The net change of
the coupling effect in five-body hypernuclear systems con-
sists of two effects, ∆VPauli and ∆Valpha, where the former
is the Pauli suppression effect, while the latter is an en-
hancement effect due to the formation of an alpha-particle
in the Ξ channel. These two effects are written as follows:

∆VPauli(5ΛΛH) = VΛΛ, Ξ0n
Pt

∆M1
VΞ0n, ΛΛ

+
1
2

(
VΛΛ, Ξ−p

Pt
∆M1

VΞ−p, ΛΛ

)
, (9)

where

∆M1 =
MΞ0 +MΞ−

2
+
Mp +Mn

2
−2MΛ + 2Bav

Λ (4ΛH) = 28.29MeV, (10)

and

∆Valpha(5ΛΛH) =
1
2

(
VΛΛ, Ξ−p

Pt
∆M1

VΞ−p, ΛΛ

)

−1
2

(
VΛΛ, Ξ−p

Pα

∆M2
VΞ−p, ΛΛ

)
(11)

with

∆M2 = MΞ− +Mα −Mt − 2MΛ + 2Bav
Λ (4ΛH)

= 11.04MeV. (12)

Pt and Pα are the projection operators on the 0s states
of 3H and 4He, respectively, and Bav

Λ is the average of the
ground 0+ and the excited 1+ levels of 4ΛHe or

4
ΛH as

Bav
Λ =

1
4
BΛ(0+) +

3
4
BΛ(1+). (13)

The second term in ∆Valpha corresponds to the coupling
effect where the converted proton is in the 0s state and
forms an alpha-particle with the triton core nucleus. The
first term is used to subtract an effect which is already
included in the single-channel ΛΛ interaction. Since the
value of ∆M2 is smaller than that of ∆M1, ∆Valpha gives
an attractive effect.

Similarly, in the case of 5ΛΛHe,

∆VPauli(5ΛΛHe) = VΛΛ, Ξ−p
Ph
∆M1

VΞ−p, ΛΛ

+
1
2

(
VΛΛ, Ξ0n

Ph
∆M1

VΞ0n, ΛΛ

)
(14)

with

∆M1 =
MΞ0 +MΞ−

2
+
Mp +Mn

2
−2MΛ + 2Bav

Λ (4ΛHe) = 28.83MeV, (15)

and

∆Valpha(5ΛΛHe) =
1
2

(
VΛΛ, Ξ0n

Ph
∆M1

VΞ0n, ΛΛ

)

−1
2

(
VΛΛ, Ξ0n

Pα

∆M2
VΞ0n, ΛΛ

)
(16)

with

∆M2 = MΞ0 +Mα −Mh − 2MΛ + 2Bav
Λ (4ΛHe)

= 5.69MeV, (17)

where Ph is the projection operator on the 0s states of
3He. In 5

ΛΛHe, ∆Valpha is more attractive than that of
5
ΛΛH

due to the smaller value of ∆M2, which can be compared
between eqs. (12) and (17).
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In our calculations, we use the fitted single-channel ΛΛ
interactions and the averaged values of our Λ-h and Λ-t
potentials, which are as follows:

VΛ-h/t =
1
4
VΛ-h/t(0+) +

3
4
VΛ-h/t(1+). (18)

It is to be noted that ∆BΛΛ for the five-body system is
defined by

∆BΛΛ = BΛΛ − 2Bav
Λ (19)

with Bav
Λ of eq. (13) as was reasonably introduced by Fil-

ikhin and Gal [4]. The results are displayed in table 4.
The ΛΛ interaction, V e1

ΛΛ, produces binding energy val-
ues, ∆BΛΛ, of 0.72MeV for 5

ΛΛH and 0.76MeV for 5
ΛΛHe

as seen in table 4. The corresponding values produced
by the free-space ΛΛ interaction V e2

ΛΛ are 1.03MeV and
1.10MeV, respectively. We then include the coupling ef-
fects ∆V e

Pauli and ∆V e
alpha in our calculations with V e2

ΛΛ.
In 5

ΛΛH, the contribution of the Pauli effect is 0.20MeV
and that of the α enhancement effect is −0.13MeV for
the NSC97e coupling strength. Then, the net effect is a
weak repulsion, which reduces the value of ∆BΛΛ in 5

ΛΛH
by 0.07MeV.

It is interesting to find that these effects give ∆BΛΛ =
1.28MeV of 5ΛΛHe, which is larger than 1.01MeV of 6ΛΛHe,
since the attractive effect of ∆V e

alpha becomes larger than
the suppression effect of ∆V e

Pauli in
5
ΛΛHe. The contribu-

tions of ∆V e
Pauli and ∆V e

alpha in this system are 0.23MeV
and −0.41MeV. Thus, the value of ∆BΛΛ for 5

ΛΛHe is
increased by the coupling effects, while they reduce the
∆BΛΛ value of 5

ΛΛH. It should be noted that the value
−0.41MeV of ∆V e

alpha is a significant factor not to be ne-
glected in comparison with the empirical value ∆BΛΛ =
1.01MeV of 6

ΛΛHe. Filikhin and Gal predicted values of
∆BΛΛ for 5

ΛΛHe and
5
ΛΛH, which are smaller than that of

6
ΛΛHe, and gave a comment that “the heavier is the core
nucleus, the larger is the ∆BΛΛ”. This contradicts our re-
sults, where ∆BΛΛ of 5

ΛΛHe is larger than that of 6
ΛΛHe.

The values of ∆BΛΛ for the three double-Λ hypernu-
clei are plotted against the coupling strength in fig. 2.
With the value of ∆BΛΛ (6ΛΛHe) fixed to the experimen-
tal value of 1.01MeV, it can be seen that the values for
the five-body double-Λ hypernuclei increase with the cou-
pling strength. Thus, the coupling strength can be sen-
sitively deduced from experimental observations of 5

ΛΛHe
and 5

ΛΛH.

4 Conclusions

We have derived the single-channel ΛΛ interactions based
on Shinmura’s S = −2 interactions, which are phase shift
equivalents to the Nijmegen soft-core NSC97e, hard-core
NHC-D and NHC-F models. The ΛΛ interaction V e1

ΛΛ is
obtained by fitting the recent 6

ΛΛHe experimental data,
∆BΛΛ = 1.01MeV [3], without including the Pauli sup-
pression effect. To obtain the free-space ΛΛ interaction,
however, we have to take into account the Pauli suppres-
sion effect in fitting the data, since it is appreciably large.
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2.0

VΛΛ,ΞN
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Fig. 2. ∆BΛΛ values against the coupling strength. The cir-
cles, stars, squares and triangles represent the cases of no, the
NHC-D, the NSC97e and the NHC-F coupling strengths, re-
spectively.

We have found that the Pauli suppression effect in 6
ΛΛHe

is 0.43MeV for the NSC97e coupling strength. A Λ-Λ
phase shift of 12◦ at the maximum is produced by the
ΛΛ interaction V e1

ΛΛ, while the free-space ΛΛ interactions,
V D2

ΛΛ , V
e2
ΛΛ and V F2

ΛΛ, give 14
◦, 17◦ and 22◦ maximum values,

respectively. Thus, the free-space ΛΛ interaction of the
NSC97e and NHC-F cases is considerably stronger than
the interaction which is obtained by fitting the Nagara-
event data while neglecting the Pauli suppression effect.

The coupling effects in the five-body systems consist
of the Pauli suppression, ∆VPauli, and an enhancement,
∆Valpha, which arises when a converted nucleon combines
with the core nucleus to form an α-particle. These two
effects are largely cancelled by each other in 5

ΛΛH, and
the resultant effect is a repulsion with 0.07 (0.16)MeV for
the NSC97e (NHC-F) coupling strength. In 5

ΛΛHe, how-
ever, the enhancement effect dominates, and the net cou-
pling effect is not a repulsion but a 0.18 (0.47)MeV at-
traction for the NSC97e (NHC-F) coupling strength. The
behaviour of ∆BΛΛ values against the coupling strength,
shown in fig. 2, indicates the significance of the ΛΛ-ΞN
coupling effect, and observations of 5ΛΛHe and

5
ΛΛH would

be critical for determining the ΛΛ-ΞN coupling strength.
One possible way to produce 5

ΛΛH through the
(K−,K+) reaction has been discussed by Kumagai-Fuse
and Akaishi [15]. They proposed that 5

ΛΛH is almost ex-
clusively formed with a large branching of about 90%, once
7
ΞH is populated by the (K−,K+) reaction on a 7Li target.
This process to produce 5

ΛΛH would be very promising if
an intense K− beam becomes available.
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Appendix A.

The total wave function of a three-body system with
masses m1, m2 and m3 is expanded in terms of Gaussian
basis functions, which are spanned over the three rear-
rangement channels in the Jacobi coordinates �rc = �ri −�rj

and �Rc = �rk − (mi�ri +mj�rj)/(mi +mj) as

Ψ =
3∑

c=1

N∑
i,j

Ac
ije

−
(

rc
bc
i

)2

e
−

(
Rc
bc
j

)2

, (A.1)

where
bi+1 = cbi. (A.2)

Typically, we use b1 = 0.2 fm, c = 1.4 and N = 11–15.
The three-body Hamiltonian is

H = − h̄2

2µc
∇2

rc
− h̄2

2Mc
∇2

Rc
+ V12 + V23 + V31, (A.3)

where µc and Mc are the reduced masses corresponding
to the Jacobi coordinates. Vij ’s are angular-momentum–
dependent potentials with Gaussian-form radial parts,

〈�r ′|V |�r 〉=
∑

l

Vle
−( r

µ )
2 δ(r′−r)

r2

∑
m

Y ∗
lm(r̂′)Ylm(r̂). (A.4)

The matrix elements of the potentials are reduced to the
following form:

4π
( π

C

) 3
2 ∑

l

(2l + 1)Vl

∫ ∞

0

drr2e−Ar2
iljl(−iBr2), (A.5)

where constants A, B and C are related to the Gaussian-
basis parameters of the wave function and range parame-
ters of the potentials. The integral part of the above ma-
trix element is evaluated to be

1
2

√
π

2
Bl

|B|2l+1

(A−√
A2 −B2)l+

1
2√

A2 −B2
. (A.6)

We checked the accuracy of our three-body calculation
on the Λ+Λ+α system with VΛΛ(97e) and VΛα from Fi-
likhin and Gal [4]. Our calculated value of BΛΛ, including
all partial-wave contributions, is 6.90MeV, which is in
good agreement with 6.90MeV of Nemura’s variational
method [16]. When only the s-state interactions are pro-
jected out, our calculation gives BΛΛ = 6.70MeV, while

that of Filikhin and Gal is 6.82MeV. Thus, there is a dis-
crepancy between our calculation and theirs; but, in the
case of VΛΛ = 0, our calculated value of BΛΛ is 6.27MeV,
which coincides with their value. From our calculation, it
is found that the higher partial-wave contribution to the
binding energy of 6ΛΛHe is 0.20MeV when all the interac-
tions are taken to be of s-state. However, when we apply
less attractive p-state Λ-α potential to the odd states, the
contribution reduces to 0.14MeV.

The non-local potentials ∆VPauli and ∆Valpha are in-
cluded in our calculations by

〈
�r ′ �R′∣∣ P

∆M

∣∣�r �R〉
=

(a
π

)3
e−

1
4 ar

′2
e−aR

′2 1
∆M

e−
1
4 ar2

e−aR2
, (A.7)

where the harmonic-oscillator strength is taken to be a =
0.521 fm−2 for 4He and a = 0.386 fm−2 for 3He and 3H.
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